3.381 \(\int \frac{x^4 \sqrt{1-x^2}}{a+b x^2+c x^4} \, dx\)

Optimal. Leaf size=325 \[ -\frac{\left (-\frac{-3 a b c-2 a c^2+b^2 c+b^3}{\sqrt{b^2-4 a c}}-a c+b^2+b c\right ) \tan ^{-1}\left (\frac{x \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}{\sqrt{1-x^2} \sqrt{b-\sqrt{b^2-4 a c}}}\right )}{c^2 \sqrt{b-\sqrt{b^2-4 a c}} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}-\frac{\left (\frac{-3 a b c-2 a c^2+b^2 c+b^3}{\sqrt{b^2-4 a c}}-a c+b^2+b c\right ) \tan ^{-1}\left (\frac{x \sqrt{\sqrt{b^2-4 a c}+b+2 c}}{\sqrt{1-x^2} \sqrt{\sqrt{b^2-4 a c}+b}}\right )}{c^2 \sqrt{\sqrt{b^2-4 a c}+b} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}+\frac{(2 b+c) \sin ^{-1}(x)}{2 c^2}+\frac{\sqrt{1-x^2} x}{2 c} \]

[Out]

(x*Sqrt[1 - x^2])/(2*c) + ((2*b + c)*ArcSin[x])/(2*c^2) - ((b^2 - a*c + b*c - (b^3 - 3*a*b*c + b^2*c - 2*a*c^2
)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]*x)/(Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[1 - x^2])]
)/(c^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]) - ((b^2 - a*c + b*c + (b^3 - 3*a*b*c + b
^2*c - 2*a*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*S
qrt[1 - x^2])])/(c^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 5.39064, antiderivative size = 325, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.207, Rules used = {1291, 388, 216, 1692, 377, 205} \[ -\frac{\left (-\frac{-3 a b c-2 a c^2+b^2 c+b^3}{\sqrt{b^2-4 a c}}-a c+b^2+b c\right ) \tan ^{-1}\left (\frac{x \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}{\sqrt{1-x^2} \sqrt{b-\sqrt{b^2-4 a c}}}\right )}{c^2 \sqrt{b-\sqrt{b^2-4 a c}} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}-\frac{\left (\frac{-3 a b c-2 a c^2+b^2 c+b^3}{\sqrt{b^2-4 a c}}-a c+b^2+b c\right ) \tan ^{-1}\left (\frac{x \sqrt{\sqrt{b^2-4 a c}+b+2 c}}{\sqrt{1-x^2} \sqrt{\sqrt{b^2-4 a c}+b}}\right )}{c^2 \sqrt{\sqrt{b^2-4 a c}+b} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}+\frac{(2 b+c) \sin ^{-1}(x)}{2 c^2}+\frac{\sqrt{1-x^2} x}{2 c} \]

Antiderivative was successfully verified.

[In]

Int[(x^4*Sqrt[1 - x^2])/(a + b*x^2 + c*x^4),x]

[Out]

(x*Sqrt[1 - x^2])/(2*c) + ((2*b + c)*ArcSin[x])/(2*c^2) - ((b^2 - a*c + b*c - (b^3 - 3*a*b*c + b^2*c - 2*a*c^2
)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]*x)/(Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[1 - x^2])]
)/(c^2*Sqrt[b - Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]) - ((b^2 - a*c + b*c + (b^3 - 3*a*b*c + b
^2*c - 2*a*c^2)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]*x)/(Sqrt[b + Sqrt[b^2 - 4*a*c]]*S
qrt[1 - x^2])])/(c^2*Sqrt[b + Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]])

Rule 1291

Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Dist[f
^4/c^2, Int[(f*x)^(m - 4)*(c*d - b*e + c*e*x^2)*(d + e*x^2)^(q - 1), x], x] - Dist[f^4/c^2, Int[((f*x)^(m - 4)
*(d + e*x^2)^(q - 1)*Simp[a*(c*d - b*e) + (b*c*d - b^2*e + a*c*e)*x^2, x])/(a + b*x^2 + c*x^4), x], x] /; Free
Q[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] &&  !IntegerQ[q] && GtQ[q, 0] && GtQ[m, 3]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 1692

Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandInteg
rand[Px*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && PolyQ[Px, x^2] && NeQ[b
^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^4 \sqrt{1-x^2}}{a+b x^2+c x^4} \, dx &=\frac{\int \frac{b+c-c x^2}{\sqrt{1-x^2}} \, dx}{c^2}-\frac{\int \frac{a (b+c)+\left (b^2-a c+b c\right ) x^2}{\sqrt{1-x^2} \left (a+b x^2+c x^4\right )} \, dx}{c^2}\\ &=\frac{x \sqrt{1-x^2}}{2 c}-\frac{\int \left (\frac{b^2-a c+b c+\frac{-b^3+3 a b c-b^2 c+2 a c^2}{\sqrt{b^2-4 a c}}}{\sqrt{1-x^2} \left (b-\sqrt{b^2-4 a c}+2 c x^2\right )}+\frac{b^2-a c+b c-\frac{-b^3+3 a b c-b^2 c+2 a c^2}{\sqrt{b^2-4 a c}}}{\sqrt{1-x^2} \left (b+\sqrt{b^2-4 a c}+2 c x^2\right )}\right ) \, dx}{c^2}+\frac{(2 b+c) \int \frac{1}{\sqrt{1-x^2}} \, dx}{2 c^2}\\ &=\frac{x \sqrt{1-x^2}}{2 c}+\frac{(2 b+c) \sin ^{-1}(x)}{2 c^2}-\frac{\left (b^2-a c+b c-\frac{b^3-3 a b c+b^2 c-2 a c^2}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{1-x^2} \left (b-\sqrt{b^2-4 a c}+2 c x^2\right )} \, dx}{c^2}-\frac{\left (b^2-a c+b c+\frac{b^3-3 a b c+b^2 c-2 a c^2}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{1-x^2} \left (b+\sqrt{b^2-4 a c}+2 c x^2\right )} \, dx}{c^2}\\ &=\frac{x \sqrt{1-x^2}}{2 c}+\frac{(2 b+c) \sin ^{-1}(x)}{2 c^2}-\frac{\left (b^2-a c+b c-\frac{b^3-3 a b c+b^2 c-2 a c^2}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{b-\sqrt{b^2-4 a c}-\left (-b-2 c+\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\frac{x}{\sqrt{1-x^2}}\right )}{c^2}-\frac{\left (b^2-a c+b c+\frac{b^3-3 a b c+b^2 c-2 a c^2}{\sqrt{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{b+\sqrt{b^2-4 a c}-\left (-b-2 c-\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\frac{x}{\sqrt{1-x^2}}\right )}{c^2}\\ &=\frac{x \sqrt{1-x^2}}{2 c}+\frac{(2 b+c) \sin ^{-1}(x)}{2 c^2}-\frac{\left (b^2-a c+b c-\frac{b^3-3 a b c+b^2 c-2 a c^2}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{b+2 c-\sqrt{b^2-4 a c}} x}{\sqrt{b-\sqrt{b^2-4 a c}} \sqrt{1-x^2}}\right )}{c^2 \sqrt{b-\sqrt{b^2-4 a c}} \sqrt{b+2 c-\sqrt{b^2-4 a c}}}-\frac{\left (b^2-a c+b c+\frac{b^3-3 a b c+b^2 c-2 a c^2}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{b+2 c+\sqrt{b^2-4 a c}} x}{\sqrt{b+\sqrt{b^2-4 a c}} \sqrt{1-x^2}}\right )}{c^2 \sqrt{b+\sqrt{b^2-4 a c}} \sqrt{b+2 c+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [B]  time = 6.30397, size = 10606, normalized size = 32.63 \[ \text{Result too large to show} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^4*Sqrt[1 - x^2])/(a + b*x^2 + c*x^4),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [C]  time = 0.033, size = 222, normalized size = 0.7 \begin{align*}{\frac{x}{2\,c}\sqrt{-{x}^{2}+1}}+{\frac{\arcsin \left ( x \right ) }{2\,c}}+{\frac{1}{4\,{c}^{2}}\sum _{{\it \_R}={\it RootOf} \left ( a{{\it \_Z}}^{8}+ \left ( 4\,a+4\,b \right ){{\it \_Z}}^{6}+ \left ( 6\,a+8\,b+16\,c \right ){{\it \_Z}}^{4}+ \left ( 4\,a+4\,b \right ){{\it \_Z}}^{2}+a \right ) }{\frac{a \left ( b+c \right ){{\it \_R}}^{6}+ \left ( 3\,ab-ac+4\,{b}^{2}+4\,bc \right ){{\it \_R}}^{4}+ \left ( 3\,ab-ac+4\,{b}^{2}+4\,bc \right ){{\it \_R}}^{2}+ab+ac}{{{\it \_R}}^{7}a+3\,{{\it \_R}}^{5}a+3\,{{\it \_R}}^{5}b+3\,{{\it \_R}}^{3}a+4\,{{\it \_R}}^{3}b+8\,{{\it \_R}}^{3}c+{\it \_R}\,a+{\it \_R}\,b}\ln \left ({\frac{1}{x} \left ( \sqrt{-{x}^{2}+1}-1 \right ) }-{\it \_R} \right ) }}-2\,{\frac{b}{{c}^{2}}\arctan \left ({\frac{\sqrt{-{x}^{2}+1}-1}{x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(-x^2+1)^(1/2)/(c*x^4+b*x^2+a),x)

[Out]

1/2*x*(-x^2+1)^(1/2)/c+1/2*arcsin(x)/c+1/4/c^2*sum((a*(b+c)*_R^6+(3*a*b-a*c+4*b^2+4*b*c)*_R^4+(3*a*b-a*c+4*b^2
+4*b*c)*_R^2+a*b+a*c)/(_R^7*a+3*_R^5*a+3*_R^5*b+3*_R^3*a+4*_R^3*b+8*_R^3*c+_R*a+_R*b)*ln(((-x^2+1)^(1/2)-1)/x-
_R),_R=RootOf(a*_Z^8+(4*a+4*b)*_Z^6+(6*a+8*b+16*c)*_Z^4+(4*a+4*b)*_Z^2+a))-2/c^2*b*arctan(((-x^2+1)^(1/2)-1)/x
)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-x^{2} + 1} x^{4}}{c x^{4} + b x^{2} + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(-x^2+1)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="maxima")

[Out]

integrate(sqrt(-x^2 + 1)*x^4/(c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 12.4666, size = 5638, normalized size = 17.35 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(-x^2+1)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="fricas")

[Out]

-1/2*(sqrt(1/2)*c^2*sqrt(-(b^4 + (2*a^2 - 3*a*b)*c^2 - (4*a*b^2 - b^3)*c + (b^2*c^4 - 4*a*c^5)*sqrt((b^6 + a^2
*c^4 + 2*(2*a^2*b - a*b^2)*c^3 + (4*a^2*b^2 - 6*a*b^3 + b^4)*c^2 - 2*(2*a*b^4 - b^5)*c)/(b^2*c^8 - 4*a*c^9)))/
(b^2*c^4 - 4*a*c^5))*log(-(2*a^2*b^3 - 2*a^3*c^2 - 2*(a^2*b^3 - a^3*c^2 - (2*a^3*b - a^2*b^2)*c)*x^2 - 2*(2*a^
3*b - a^2*b^2)*c + sqrt(1/2)*((b^6 + 4*a^2*b*c^3 + (8*a^2*b^2 - 5*a*b^3)*c^2 - (6*a*b^4 - b^5)*c)*sqrt(-x^2 +
1)*x - (b^6 + 4*a^2*b*c^3 + (8*a^2*b^2 - 5*a*b^3)*c^2 - (6*a*b^4 - b^5)*c)*x - ((b^4*c^4 - 6*a*b^2*c^5 + 8*a^2
*c^6)*sqrt(-x^2 + 1)*x - (b^4*c^4 - 6*a*b^2*c^5 + 8*a^2*c^6)*x)*sqrt((b^6 + a^2*c^4 + 2*(2*a^2*b - a*b^2)*c^3
+ (4*a^2*b^2 - 6*a*b^3 + b^4)*c^2 - 2*(2*a*b^4 - b^5)*c)/(b^2*c^8 - 4*a*c^9)))*sqrt(-(b^4 + (2*a^2 - 3*a*b)*c^
2 - (4*a*b^2 - b^3)*c + (b^2*c^4 - 4*a*c^5)*sqrt((b^6 + a^2*c^4 + 2*(2*a^2*b - a*b^2)*c^3 + (4*a^2*b^2 - 6*a*b
^3 + b^4)*c^2 - 2*(2*a*b^4 - b^5)*c)/(b^2*c^8 - 4*a*c^9)))/(b^2*c^4 - 4*a*c^5)) - 2*(a^2*b^3 - a^3*c^2 - (2*a^
3*b - a^2*b^2)*c)*sqrt(-x^2 + 1))/x^2) - sqrt(1/2)*c^2*sqrt(-(b^4 + (2*a^2 - 3*a*b)*c^2 - (4*a*b^2 - b^3)*c +
(b^2*c^4 - 4*a*c^5)*sqrt((b^6 + a^2*c^4 + 2*(2*a^2*b - a*b^2)*c^3 + (4*a^2*b^2 - 6*a*b^3 + b^4)*c^2 - 2*(2*a*b
^4 - b^5)*c)/(b^2*c^8 - 4*a*c^9)))/(b^2*c^4 - 4*a*c^5))*log(-(2*a^2*b^3 - 2*a^3*c^2 - 2*(a^2*b^3 - a^3*c^2 - (
2*a^3*b - a^2*b^2)*c)*x^2 - 2*(2*a^3*b - a^2*b^2)*c - sqrt(1/2)*((b^6 + 4*a^2*b*c^3 + (8*a^2*b^2 - 5*a*b^3)*c^
2 - (6*a*b^4 - b^5)*c)*sqrt(-x^2 + 1)*x - (b^6 + 4*a^2*b*c^3 + (8*a^2*b^2 - 5*a*b^3)*c^2 - (6*a*b^4 - b^5)*c)*
x - ((b^4*c^4 - 6*a*b^2*c^5 + 8*a^2*c^6)*sqrt(-x^2 + 1)*x - (b^4*c^4 - 6*a*b^2*c^5 + 8*a^2*c^6)*x)*sqrt((b^6 +
 a^2*c^4 + 2*(2*a^2*b - a*b^2)*c^3 + (4*a^2*b^2 - 6*a*b^3 + b^4)*c^2 - 2*(2*a*b^4 - b^5)*c)/(b^2*c^8 - 4*a*c^9
)))*sqrt(-(b^4 + (2*a^2 - 3*a*b)*c^2 - (4*a*b^2 - b^3)*c + (b^2*c^4 - 4*a*c^5)*sqrt((b^6 + a^2*c^4 + 2*(2*a^2*
b - a*b^2)*c^3 + (4*a^2*b^2 - 6*a*b^3 + b^4)*c^2 - 2*(2*a*b^4 - b^5)*c)/(b^2*c^8 - 4*a*c^9)))/(b^2*c^4 - 4*a*c
^5)) - 2*(a^2*b^3 - a^3*c^2 - (2*a^3*b - a^2*b^2)*c)*sqrt(-x^2 + 1))/x^2) + sqrt(1/2)*c^2*sqrt(-(b^4 + (2*a^2
- 3*a*b)*c^2 - (4*a*b^2 - b^3)*c - (b^2*c^4 - 4*a*c^5)*sqrt((b^6 + a^2*c^4 + 2*(2*a^2*b - a*b^2)*c^3 + (4*a^2*
b^2 - 6*a*b^3 + b^4)*c^2 - 2*(2*a*b^4 - b^5)*c)/(b^2*c^8 - 4*a*c^9)))/(b^2*c^4 - 4*a*c^5))*log(-(2*a^2*b^3 - 2
*a^3*c^2 - 2*(a^2*b^3 - a^3*c^2 - (2*a^3*b - a^2*b^2)*c)*x^2 - 2*(2*a^3*b - a^2*b^2)*c + sqrt(1/2)*((b^6 + 4*a
^2*b*c^3 + (8*a^2*b^2 - 5*a*b^3)*c^2 - (6*a*b^4 - b^5)*c)*sqrt(-x^2 + 1)*x - (b^6 + 4*a^2*b*c^3 + (8*a^2*b^2 -
 5*a*b^3)*c^2 - (6*a*b^4 - b^5)*c)*x + ((b^4*c^4 - 6*a*b^2*c^5 + 8*a^2*c^6)*sqrt(-x^2 + 1)*x - (b^4*c^4 - 6*a*
b^2*c^5 + 8*a^2*c^6)*x)*sqrt((b^6 + a^2*c^4 + 2*(2*a^2*b - a*b^2)*c^3 + (4*a^2*b^2 - 6*a*b^3 + b^4)*c^2 - 2*(2
*a*b^4 - b^5)*c)/(b^2*c^8 - 4*a*c^9)))*sqrt(-(b^4 + (2*a^2 - 3*a*b)*c^2 - (4*a*b^2 - b^3)*c - (b^2*c^4 - 4*a*c
^5)*sqrt((b^6 + a^2*c^4 + 2*(2*a^2*b - a*b^2)*c^3 + (4*a^2*b^2 - 6*a*b^3 + b^4)*c^2 - 2*(2*a*b^4 - b^5)*c)/(b^
2*c^8 - 4*a*c^9)))/(b^2*c^4 - 4*a*c^5)) - 2*(a^2*b^3 - a^3*c^2 - (2*a^3*b - a^2*b^2)*c)*sqrt(-x^2 + 1))/x^2) -
 sqrt(1/2)*c^2*sqrt(-(b^4 + (2*a^2 - 3*a*b)*c^2 - (4*a*b^2 - b^3)*c - (b^2*c^4 - 4*a*c^5)*sqrt((b^6 + a^2*c^4
+ 2*(2*a^2*b - a*b^2)*c^3 + (4*a^2*b^2 - 6*a*b^3 + b^4)*c^2 - 2*(2*a*b^4 - b^5)*c)/(b^2*c^8 - 4*a*c^9)))/(b^2*
c^4 - 4*a*c^5))*log(-(2*a^2*b^3 - 2*a^3*c^2 - 2*(a^2*b^3 - a^3*c^2 - (2*a^3*b - a^2*b^2)*c)*x^2 - 2*(2*a^3*b -
 a^2*b^2)*c - sqrt(1/2)*((b^6 + 4*a^2*b*c^3 + (8*a^2*b^2 - 5*a*b^3)*c^2 - (6*a*b^4 - b^5)*c)*sqrt(-x^2 + 1)*x
- (b^6 + 4*a^2*b*c^3 + (8*a^2*b^2 - 5*a*b^3)*c^2 - (6*a*b^4 - b^5)*c)*x + ((b^4*c^4 - 6*a*b^2*c^5 + 8*a^2*c^6)
*sqrt(-x^2 + 1)*x - (b^4*c^4 - 6*a*b^2*c^5 + 8*a^2*c^6)*x)*sqrt((b^6 + a^2*c^4 + 2*(2*a^2*b - a*b^2)*c^3 + (4*
a^2*b^2 - 6*a*b^3 + b^4)*c^2 - 2*(2*a*b^4 - b^5)*c)/(b^2*c^8 - 4*a*c^9)))*sqrt(-(b^4 + (2*a^2 - 3*a*b)*c^2 - (
4*a*b^2 - b^3)*c - (b^2*c^4 - 4*a*c^5)*sqrt((b^6 + a^2*c^4 + 2*(2*a^2*b - a*b^2)*c^3 + (4*a^2*b^2 - 6*a*b^3 +
b^4)*c^2 - 2*(2*a*b^4 - b^5)*c)/(b^2*c^8 - 4*a*c^9)))/(b^2*c^4 - 4*a*c^5)) - 2*(a^2*b^3 - a^3*c^2 - (2*a^3*b -
 a^2*b^2)*c)*sqrt(-x^2 + 1))/x^2) - sqrt(-x^2 + 1)*c*x + 2*(2*b + c)*arctan((sqrt(-x^2 + 1) - 1)/x))/c^2

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4} \sqrt{- \left (x - 1\right ) \left (x + 1\right )}}{a + b x^{2} + c x^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(-x**2+1)**(1/2)/(c*x**4+b*x**2+a),x)

[Out]

Integral(x**4*sqrt(-(x - 1)*(x + 1))/(a + b*x**2 + c*x**4), x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(-x^2+1)^(1/2)/(c*x^4+b*x^2+a),x, algorithm="giac")

[Out]

Timed out